
1

DCNNN
User Manual

Version 1.0

Main contact: Fran Li, University of Tennessee, fli6@utk.edu

Contributors: Haoyuan Sun, Yan Du, Fran Li

December 30, 2019

© 2019 ENLITEN Lab

All Rights Reserved

mailto:fli6@utk.edu

2

1 Introduction
1.1 Background
Deep Convolutional Neural Network for N-1 security screening (DCNNN) is a power system N-1
contingency screening tool based on deep convolutional neural network. This tool can be used to accelerate
N-1 contingency screening of power systems by training a deep convolutional neural network to calculate
AC power flows under N-1 contingency under a large amount of uncertain scenarios.

The algorithms in DCNNN were developed by Yan Du of the ENLITEN Lab at The University of
Tennessee, Knoxville under the direction of Professor Fangxing (Fran) Li [1]. Haoyuan Sun designed and
coded this GUI for these algorithms.

This tool works as follows: ① Data Generation: The power flows of the specified test cases are solved with
Matpower [2] under different load and wind power scenarios; and ②Training and Testing: The generated
data are divided into training set and test set according to a user defined ratio and are used to train and test
a deep CNN network.

1.2 Citing DCNNN
We request that the users of DCNNN acknowledge our work by citing the following paper [1].

Y. Du, F. Li, J. Li and T. Zheng, “Achieving 100x acceleration for N-1 contingency screening with
uncertain scenarios using deep convolutional neural network,” IEEE Trans. on Power Syst., vol. 34,
no. 4, pp. 3303-3305, July 2019. DOI: 10.1109/TPWRS.2019.2914860.

2 Getting Started
2.1 System Requirements
To use DCNNN 1.0, you will need:

Python 3.6
Tensorflow 1.6
Sklearn

We recommend the Miniconda distribution which includes the conda package manager and Python. Please
download and install the latest Miniconda (x64 with Python 3) from https://conda.io/miniconda.html. Use
the default installation settings.

Open the Anaconda Prompt and create an environment for DCNNN (optional)

Install Tensorflow and Sklearn

Add the environment folder to the system environment variable ‘Path’

conda create --name DCNNN python=3.6

conda activate DCNNN

pip install tensorflow==1.6

pip install sklearn

https://conda.io/miniconda.html

3

1. Locate the ‘DCNNN’ environment you just created (or another environment you plan to use).
Usually, it is in “C:\Users\[your user name]\Miniconda3\envs\DCNNN or [your environment
name]” or “C:\Users\[your user name]\.conda\envs\DCNNN or [your environment name]”. Copy
this path.

2. Start the system control panel (Control Panel – System), and select the advanced tab.

3. Click the environment variables button.

4. Under system variables, select ‘Path’, then click Edit.

5. Add the path you just copied.

2.2 Obtaining DCNNN
Contact Dr. Fran Li at fli6@utk.edu.

2.3 Installation
Start ‘DCNNN_Installer.exe’ and follow the instructions. Default installation settings are recommended.

3 Training and Testing a Network
You will see a command shell and a control panel (shown as below) after you start DCNNN.

The command shell is where training and testing results will be displayed. All results are also in a separate
‘txt’ file for future reference. On the control panel, you can adjust the parameters according to your demand.
Here are some suggestions on how to select the parameters:

mailto:fli6@utk.edu

4

Name of Parameter Comments from Designers

Test Case IEEE standard test systems. The case name indicates the
number of buses in the system.

Num. of Load Scenarios
(10 ~ 100)

Set at multiples of 10. More scenarios mean a more
generalized neural network but also longer training time.

Load Forecast Error A larger error means a more generalized network but also
less accuracy. Recommended range is −0.2 ~ +0.2 [3].

Num. of Wind Scenarios
(10 ~ 100)

Set at multiples of 10. More scenarios mean a more
generalized neural network but also longer training time.

Wind Forecast Error − Standard Deviation
(Normal Distribution, Mean = 0)

A larger error means a more generalized network but also
less accuracy. Recommended value is 0.05 [4].

Ratio of Training Set Recommended value is 70% ~ 80% according to
designers’ experience.

Once all parameters are set, click ‘Run’ to start training and testing a network. All results will be saved in
the folder named ‘casex_yyyymmdd_mmss’, e.g., case9_20191230_1008.

4 References
[1] Y. Du, F. Li, J. Li and T. Zheng, “Achieving 100x acceleration for N-1 contingency screening with

uncertain scenarios using deep convolutional neural network,” IEEE Trans. on Power Syst., vol.
34, no. 4, pp. 3303-3305, July 2019. DOI: 10.1109/TPWRS.2019.2914860.

[2] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Matpower: steady-state operations,
planning and analysis tools for power systems research and education,” IEEE Trans. on Power
Syst., vol. 26, no. 1, pp. 12−19, Feb. 2011. DOI: 10.1109/TPWRS.2010.2051168.

[3] Y. Liu, N. Zhang, Y. Wang, J. Yang and C. Kang, “Data-driven power flow linearization: a
regression approach,” IEEE Trans. on Smart Grid, vol. 10, no. 3, pp. 2569-2580, May 2019. DOI:
10.1109/TSG.2018.2805169.

[4] D. T. Nguyen and L. B. Le, “Risk-constrained profit maximization for microgrid aggregators with
demand response,” IEEE Trans. on Smart Grid, vol. 6, no. 1, pp. 135-146, Jan. 2015. DOI:
10.1109/TSG.2014.2346024.

	1 Introduction
	1.1 Background
	1.2 Citing DCNNN

	2 Getting Started
	2.1 System Requirements
	2.2 Obtaining DCNNN
	2.3 Installation

	3 Training and Testing a Network
	4 References

